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Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field
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The Ginzburg-Landau model below its critical temperature in a temporally oscillating external field is
studied both theoretically and numerically. As the frequency or the amplitude of the external field is changed,
a nonequilibrium phase transition is observed. This transition separates spatially uniform, symmetry-restoring
oscillations from symmetry-breaking oscillations. Near the transition a perturbation theory is developed, and a
switching phenomenon is found in the symmetry-broken phase. Our results confirm the equivalence of the
present transition to that found in Monte Carlo simulations of kinetic Ising systems in oscillating fields,
demonstrating that the nonequilibrium phase transition in both cases belongs to the universality class of the
equilibrium Ising model in zero field. This conclusion is in agreement with symmetry argui@n&instein,

C. Jayaprakash, and Y. He, Phys. Rev. L8§.2527(1985] and recent numerical resuli§. Korniss, C. J.
White, P. A. Rikvold, and M. A. Novotny, Phys. Rev.@3, 016120(2001)]. Furthermore, a theoretical result

for the structure function of the local magnetization with thermal noise, based on the Ornstein-Zernike ap-
proximation, agrees well with numerical results in one dimension.
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[. INTRODUCTION the frequency () exceeds its field- and temperature-
dependent critical valu@ ., as well as critical slowing down
Bistable systems that are driven between their two statelsl2]. The probability density of the period-averaged magne-
by a periodically oscillating external force are common, intization exhibits a one-peak structure far<(). and a two-
both nature and technology. A few examples are hysteresigeak structure forQ>Q. [13-17. In spatially extended
in ferromagnetic[1-4] and ferroelectric[5—7] materials bistable systems, such as the two-dimensional kinetic Ising
driven by oscillating applied fields, electrochemical adsor-model below its critical temperature, the transition also dis-
bate systems driven across a phase transition by an oscillgitays a divergent correlation length and finite-size scaling
ing electrode potential8—10], and liquid crystals driven properties analogous to those familiar from equilibrium
through a phase transition by pressure oscillatigifd. In phase transitiongl3—17. It has become common to refer to
this paper we use magnetic language, henceforth referring tiis symmetry-breaking transition as the “dynamic phase
the order parameter as the magnetization and the oscillatingansition” (DPT).
force as the magnetic field. The DPT was first observed in numerical solutions of a
When the field oscillates at a sufficiently low frequency, deterministic mean-field equation of motion for a ferromag-
the driven system essentially follows the field, showing anet in an oscillating field 18,19, and it has subsequently
symmetry-restoring oscillatiofSRO with the same period, been seen and studied in numerous Monte GaIG) simu-
provided that the amplitude of the external force is largerations of kinetic Ising systemd2-17,20—-2% as well as in
than a critical value that depends on the temperature and tHarther mean-field studig€2,21,23,26,2} It may also have
system’s spatial dimension. At high driving frequencies, onbeen observed experimentally in ultrathin Co films on
the other hand, the system is unable to follow the field andCu(100 [3,4]. Reviews of earlier research on the DPT and
instead settles down to a symmetry-breaking oscillatiorrelated phenomena are found in R¢8,29.
(SBO) around one or the other of its zero-field stable states. Finite-size scaling analysis of MC data for the DPT in the
Over the last decade it has become evident that the boundwo-dimensional kinetic Ising model at subcritical tempera-
ary between the SRO and SBO regimes corresponds to tares provides strong numerical evidence that this nonequi-
singularity that appears to have all the hallmarks of a genulibrium critical phenomenon belongs to the same universality
ine second-order phase transition. It is therefore appropriatelass as the equilibrium phase transition in the two-
to consider the SRO and SBO dgnamic phase®f this  dimensional Ising model in zero field3—-16. While this
far-from-equilibrium system. Characteristic features of thisresult may seem surprising at first, it is consistent with a
nonequilibrium phase transition include a power-law depensymmetry argument by Grinstein, Jayaprakash, anfi30g
dence of the amplitude of the SBO on the amount by whichThis argument states that continuous ordering transitions of
fully probabilistic cellular automata with Ising-like “up-
down” symmetry (of which the kinetic Ising model in an

*Electronic address: fujisaka@acs.i.kyoto-u.ac.jp oscillating field is an examp)eshould fall in the same uni-
"Electronic address: tutu@acs.i.kyoto-u.ac.jp versality class as the corresponding Ising model in equilib-
*Electronic address: rikvold@csit.fsu.edu rium. This implies that such a cellular automaton should pos-
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sess an underlying coarse-grained effective Hamiltonian girovided that spatially periodic boundary conditions are

sufficiently large length scales, which determines its univerused. Without loss of generalith,and() are taken as posi-

sality class. tive. Eventually,y(t) always exhibits a periodic oscillation
The purpose of the present paper is to elucidate the origiof frequency() for any choice oth, Q, and the initial value

of the DPT and to clarify the statistical characteristics of they(0). It exhibits no other periodic or chaotic oscillations.

dynamics near the DPT, subject to thermal noise. To thiShis is so because the dynamical systénis dissipative

effect we consider a time-dependent Ginzburg-Landawand has only two degrees of freedom.

model with thermal noise. The equation of motion for the  One should be careful when discussing the dynamics near

noise-free version of this model is ) =0. By shifting time ag—t— 7/(2Q)), Eq.(3) reduces to

W(r)=g— 3+ V2y+hcog Ot), 1) Y(t)=y— P+ hsin(Qt). (4)

. . o ' If one putsQ)=0 in Egs.(3) and(4) while keepingh finite,
where (r,t) is the continuous scalar magnetization fleld,they have different fixed points. The peridd (=2/Q) of

32ggr?nngﬁe?;?alﬂr]r?agr:gituf?; danrgsf[gee%ltji(\a/z:;y ?; ;Zi;gzgﬁgﬁthe applied field tends to infinity @ — 0. One should there-
field, Eq. (1) is identical to the conventional Ginzburg- fore discuss the long-time behavior ¢f (t>T) at finite 0,

Landau equation for the Ising mode¢lowits critical tem- and then take the limi©2—0. The above discrepancy origi-

perature. The effects of thermal noise on the system are e)@_ates from the interchange of the limits: > and{}—0. If

S . . one takes the limits correctly, the long-time behaviors of
pressed by the stochastic differential equation Egs.(3) and(4) give the same resuilts.

: S For h=0, ¢(t) eventually approaches one of the stable
P(rt)=¢— >+ Vy+hcog Qt) +R(r,1), (2 fixed pointsy,= = 1. Then, under an applied fieldcost)
with a small amplitude, it is easy to see thétt) exhibits a
whereR(r,t) is a Gaussian white thermal noise. In this paperperiodic oscillation. In fact, to first order ih, Eq. (3) is
we show that Eqs(1) and(2) give rise to a bifurcation line  solved by
in the (2,h) plane. Near this bifurcation line the equations
yield an effective Hamiltonian for dynamic order param-
eter. This effective Hamiltonian is in the same universality P(t)==1+
class as the equilibrium Ising model in zero field, and its 4
existence provides explicit confirmation of the symmetry ar- o o : : :
gument of Ref[30] for this far-from-equilibrium system. E:Ltl or. ITS éseseﬁgggs:)nncﬁ(é)ir?i?i;"?;toensdﬂi%?]r_ evl\t/gatphus

Equations(1) anc_J (2) with h=0 give rise to two d_egen-_ expect that Eq(3) exhibits a symmetry-breaking periodic
erate ordered solutions only for systems of spatial d'menS'OBscillation in the regime of relatively weak

d=2 at temperatures below criticality. These conditions will Let () be a solution of Eq(3). It is then easy to show

be assumed hereafter, unless otherwise explicitly stated. - .
The present paper is organized as follows. In Sec. Il wénat#(t) given by

show that the spatially uniform oscillation of E{.) under-

goes a bifurcation a$) is increased, which separates the P()=—

symmetry-restoring and symmetry-breaking dynamic phases.

In Sec. Ill we develop a Landau expansion near the bifurca-

tion, which is used to explain the switching phenomenonIS also always a solution of E¢3), including even the tran-

. ) . sient process. As a special cdsee Eq(27) below], Eq. (3)
observed in a sys_tem subject to ther_mal noise. In Sec. IV WE s a particular solution with the symmetry
show that theoretical results for spatial power spectra of spin
fluctuations(structure functionsobtained by the Landau ex-
pansion are in good agreement with numerical experiments p(t)y=—4¢
for a one-dimensional system. A summary and conclusions

are given in Sec. V. If the dynamical behavior satisfies the symmet®), one
obtains

T gal2cos00+Qsinon] (5

T
t+ E) (6)

+T
t*t3

. (7)

Il. BIFURCATION OF THE T
SYMMETRY-RESTORING OSCILLATION f z/;(t)ei/mdt=0 (/:O’izyiéll ). (8)
In this section we concentrate on the uniform solutions of 0

the noise-free system described by Ef). The effects of _However, the fact that the systef8) has the symmetry7)

spatial fluctuations and thermal noise will be discussed ifyges not necessarily mean that the dynamical behavior al-
Sec. Il. ways exhibits this symmetry. In fact, as discussed above for

_It is easy to see that E@1) has a spatially uniform oscil-  gmaiih and as shown below, E) has a stable symmetry-
lation, breaking solution for a certain range lofand Q).
) As discussed above, the dynamics in a weak external field
J(t)=y— y3+h cog Ot), 3 shows a SBO. This implies that the SRO, if it exists, should
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FIG. 1. Limit-cycle attractors for parameter
values(a) h=1.0, 2=1.08 and(b) h=1.0, Q
=1.1. The phase points move clockwise. (B
(Q2<Q~1.095), there stably exists only one
limit cycle, which is symmetric in the sense that
Eq. (7) is satisfied. In(b) (2>Q.), the symmet-
ric limit cycle denoted by the dashed curve is
: unstable, and there appear two stable nonsym-
] metric limit cyclesC, andC_.
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do so for a relatively large amplitude of the external field.Since¢(t) is periodic with periodTl, §i(t) is solved as
This also suggests that there should exist a transition be-
tween the SBO and the SRO, provided that the SRO stably Sy(t)=B(t)esy(0). (10
exists. This is an immediate consequence of the symmetrP/ i
consideration. f we define

For the moment, let us consider the parameter values L 1T
=1.0, and(2=1.08 and 1.1. For these parameter values, the A=1-3y?= 1_3_J [4(s)]?ds, (11)
system has attractors as shown in Fig. 1. Throughout this TJo
paper, the numerical integration of E®) is carried out by
using the fourth-order Runge-Kutta algorithm with the timethen
incrementAt=T/1024 for all frequencies. The attractors are . .
limit cycles of periodT. They have the symmetry) for ( B(t)=ex;{ _3f ([t ]2 wz}dt’} (12)
=1.08, but are asymmetric fd2=1.1. The above consider- 0
ations suggest the existence of a phase transition between
these different characteristic oscillations. Figure 2 shows thé a periodic function of period, i.e., B(t+T)=B(t). Here
hysteresis loops, i.e., the dependence dft) on h(t) we have defined the period average oft) as f(t)
=hcos()t) for ) below and above)., the critical fre- =T*1fgf(t+s)ds. The results(10)—(12) follow from the
guency separating the interchange of the symmetric and nofHoquet theoreni31]. The quantityA is called the Floquet
symmetric oscillations. Numerically, we fifd .~1.095 for ~ exponent and indicates the stability of the periodic oscilla-
h=1.0. tion under consideration, i.ei(t) is linearly stable(un-

Next we consider the stability of the attractor with the stablg if A<0 (>0). Numerical results foA calculated by
symmetry(7), shown in Fig. 1, a$) is increased at fixed. Eqg. (11) are shown in Fig. 3. Fof) below ()., the critical
The stability of a periodic oscillation is discussed as follows.value for a giverh, A takes a negative value, which is de-
Let (t) be a particular solution of Ed3) on an attractor, noted by\. The limit cycle for Q<. is symmetric as
which may be either stable or unstable. In order to examinghown in Figs. (a) and Za). As () is gradually increased,
its linear stability, we seek the temporal evolution of thethe Floquet exponent approaches zero and again takes a
deviation y(t) from this solution. Thengy(t) obeys the negative value fof)>(.. Figures 1b) and Zb) show the

equation of motion stable attractorgsolid curve$ corresponding to the limit
i cycles forQ)>Q.. Figure 4 shows the stability regions of
Sy(t)={1—3[(1)]%} Su(t). (99 the SRO and the SBO. In the SBO region, one finds that

N
N

(b)

FIG. 2. Hysteresis loops of limit-cycle attrac-
tors, i.e., #(t) vs h(t)=hcoslt) for (&8 h
=1.0, 0=1.08 and(b) h=1.0, Q=1.2. The
phase points move counterclockwise. (B ({)
<Q.~1.095), there is only one stable symmetric
limit cycle. In (b) (Q>Q,), the symmetric limit
cycle (dashed curveis unstable, and there exist
two stable nonsymmetric limit cycle€, and
C_.
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FIG. 5. Stroboscopic mapg,=¢(nX2x/Q) for (a) 1=1.08
(<Qp) and (b) Q=12 (>Q.) with h=1.0. ForQ>Q,, there
appear two stable, nonsymmetric limit cycles.

L | L | L |
0'51 1.05 1.1 115

FIG. 3. The Floguet exponent, shown vs() for h=1.0. For . . -
Q<Q., the limit cycle is symmetric and stable. Fr>0, the ~ =x@mples of numerically obtaineg{¢) are shown in Fig. 5.

dashed line is the Floguet exponent for the unstable symmetric limifigure 9a) is for 0 <Q., and Fig. §b) is for Q> De-
cycle, and the solid line is the exponent for the stable symmetryP€nding on(}, there are one or three fixed poinjs satisfy-

breaking limit cycle. For details on the calculation of Floquet ex-1Ng ¥¢=9d(#1), which CO”??DOV‘d to cross seqtions of Iimit-
ponents, see the text. cycle attractors. The stability of a limit cycle is determined

by the slope ofy(¢) at =5, i.e., the Floquet exponent is

there exist two attractor€ ~ andC, , one of which is cho- 91ven by

sen depending on the initial condition. Far>Q) ., there is
also a symmetry-restoringnstablelimit cycle, whose Flo-
guet exponent is denoted Ry, in Fig. 3, and whose trajec-
tory is depicted by the dashed curves in Figd) nd 2b).
The transition at(). is continuous, as is expected from the
frequency dependence of the Floquet exponent shown in Fi
3.

The unstable limit cycle, i.e., the SRO fé1>Q, is
numerically obtained as follows. Taking an initial valyg
at timet,=nT, then integrating Eq(3) until t,,;=t,+T,
we obtainy, 1. In this way we get the), ., Vs ¢, curve,

1
A:f|”|g'(l//f)|- (14)

%he unstable periodic orbit shown in Figgbland 2b) is

the one numerically integrated with the initial valyg, the
unstable fixed point. The temporal evolutions of one unstable
and two stable oscillations are shown in Fig. 6. One should
note that, if the stroboscopic map is constructed for times
t,=7+nT, the form ofg(y) depends ornr. However, the
number of fixed points of,,. 1=9(¢,,) and the correspond-
ing slopes, which yield the Floquet exponents for the fixed
points, are independent of

Uns1=9(n). (13

2.0 . ! . ! . .

1.5

L 1.0

0.5

T R - B ¥ B T E—
Q t/T

FIG. 4. The bifurcation curve separating the symmetry-restoring FIG. 6. Temporal evolutions of the stable orbils and C_
oscillation (SRO and the symmetry-breaking oscillatidi$BO). (solid curveg and the unstable orbifdashed curyein the SBO
The numerically obtained points are represented as data points, anegime forh=1.0 (<Q.) and Q=12 (>Q.). The dot-dashed
the approximate theoretical res@®1) as a solid curve. curve representi(t).
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The bifurcation point(), depends orh. The theoretical one is the unstable SRO, and the other is represented by the
bifurcation curve given by the solid curve in Fig. 4 is deter-two stable SBOs, one of which is observed for a given initial
mined as follows. We first expangi(t) as the Fourier series condition.

Here a comment on the critical value lofunder a static
- . field, =0, should be added. The above approximation
‘ﬂ(t):/Z_m (e, (15 vyields the critical value 4/6~0.408. On the other hand, the
- standard calculation in mean-field theory yields the spinodal
field as the field where the metastable minimum in #fe

_ ok . -
wherey: = . The temporal evolution of the coefficients potential disappears. This condition requires that the equa-

{¢ (1)} is assumed to be much slower than the time stale

Inserting Eq(15) into Eq.(3) and comparing the coefficients tions
on both sides of the equation, we obtain b=u—P+h=0,
_ : (22
Y/ Q== 2 2 ety —mon W o
" Gy =1 30°=0
+ %(5/ 1+68, _h. (16) are simultaneously satisfied. The second equation gives

Pspinodal= +1//3 which, when inserted into the first equa-
tion, yields hgpinoua= 21/3/9~0.385. This value is about 6%
below that obtained in the above discussion. We carried out
numerical calculations for values € as small as 0.05. The
numerical results seem to be closerhg,nygq than to the
present approximate value\B. However, calculations at
even smallef), which were not feasible in the present study,
would be needed to reach a firm conclusion. A sharp de-
crease of the critical value d¢f as() is decreased may sug-
gest the possibility that the transition curve has a kind of
singularity, i.e., thatth/dQ) might diverge af) approaches
. zero[26].

Po=[1—6|y|*~ ‘l’é] Yo, (18) Next we evaluate how the amplitude of the SBO develops

L for O above(.. The steady-state valueg® and ¢3° are

Yo a1 2_ o2 - obtained by setting/g°=sin @ and ¢5°=6~Y%cos6)e“. For
it iy =[1=34al"= 300l + 2h' 19 0<Q., =0, whileoa is small forQ=Q.. A short calcu-

lation shows that the order parameig® is asymptotically
The above equations have a SR@,€0) provided that 1 given by

—6|#1|2<0. On the other hand, for 46|44|?>>0 the
steady-state value af, does not vanish, which implies the U3= VA - Q¢ (23
emergence of a SBO. Therefore, we find that the boundary

between the regions of stability of the SRO and SBO iswith ¢;=/8Q./(4Q¢+11). The amplitude and phase pf®
determined by#332=%. Combining this with the steady- are given as
state value ofy3® obtained from Eq.(19), the bifurcation

From the symmetry argument, E(B) may have a solution
with the symmetry(7). If the limit cycle under consideration
is symmetric, we find from Eq8) that

y,=0 for /=0,=2,%4,... . 17
We now consider the stability of this symmetric oscillation.

As the simplest nontrivial approximation, we use the trunca
tion /=0 and=1, which yields

point ) for fixed h is determined by TRE %[ 1— %Ci(ﬂ_ﬂc)} (24)
Q.= §( h2— 1) (200 and
¢ 2 6
a=a,+Cy(Q—Q,), (25)

or, equivalently,
respectively, where

2(1
h= § Z+QC . (21) -1

CosSa = —F——,
¢ Ja0%+1

One finds that this kind of bifurcation is observed fdarger

than a critical value, /6 in the above approximation. The . —20,

curve given by Eq(21) corresponds to the transition line, sinae= \/m (26)
which in Fig. 4 is compared with results from numerical ¢

integration of Eq(3). For <, there is only one type of 22

periodic motion, namely, the symmetry-restoring one. For Co=—— .

Q>Q., on the other hand, there are two types of oscillation: 40c+11

036109-5



H. FUJISAKA, H. TUTU, AND P. A. RIKVOLD PHYSICAL REVIEW E63 036109

T ' ' ' T ' provided that the deviation is sufficiently small. This equa-
tion is solved as
04

Y (1) =B(t)eMY (0), (31)

02 whereB(t) is again a periodic function and

A=\ —Kk? (32

is the linear growth rate of the Fourier mode at wave vector
k. Sincex <0, )\ is always negative, which implies that the
1 uniform oscillation with negative Floquet exponent is lin-
o4k _ early stable against inhomogeneous fluctuations with any
. | . ,\r\ wave vector. This implies that the systéfr) eventually ap-
1 1.05 Q11 115 proaches a spatially uniform oscillatory motion, provided
Q that there exists no other stable dynamical behavior.
For simplicity, the values of).(h), obtained above from
FIG. 7. Bifurcation diagram ofj,[=¢(nX2n/Q)], i.e,, the  the spatially uniform solution, will be referred to as the

fixed points of the mapl3) for h=1.0. For(}<€);~1.095, there is  mean_field valuesf Q.. In spatially extended systems with

one unique fixed point. Fd2 >, there exist one unstable fixed thermal noise, the actual values @f, are renormalized by
point (dashed lingand two stable fixed pointsolid curves. fluctuations '

02

The Q) dependences of the amplitudes of the SRO and SBO
are shown in Fig. 7, which was obtained from the stable and
unstable fixed points of Eq13).

Numerical integration shows that the time evolutions of \We now move on to the discussion of the spatially ex-
the symmetry-breaking orbis, andC_, which ares,.(t)  tended system with local interactions, which is described by
and ¢_(t), respectively, are related as Egs.(1) and(2). The noise-free case, Efl), is discussed in
Sec. Il A. The effects of thermal noise, described by &3,

I1l. LANDAU EXPANSION AND THERMAL
NOISE EFFECTS

T . .
v ()=—y | t+ > are considered in Sec. Il B.
(27 A. Landau expansion near the bifurcation point
()= — i, | t+ I Let ¢, (t) be the spatially uniform SRO that obeys EB).
2 and satisfies the symmetty), and letA be its Floquet ex-
. ponent, which is calculated by E@L1) with #(t) =, (t). It
(see Fig. 6, where is given by A=\(<0) for Q<Q., and A=\ ,(>0) for
. O>Q., in the notation used in Fig. 3. Expandingr,t)
wi(t) = l;[/t(t)_[l/fi(t)]3+ h COQQI) (28) arouna this SRO as
The symmetry(27) is just a particular case of the general P(r )=, (1) +B, (1) (r,1), (33

symmetry relation6).

We find that the stable limit cycle of E¢3) for 0<Q.  whereB, (t) is defined by Eq(12) with (t)= ¢, (t), and
(Q>Q,.) is a symmetry-restoringsymmetry-breakingos-  inserting this into Eq(1), we immediately find
cillation, and that one of the two stable SBOs is chosen,
depending on the initial condition. Next, we examine the¢(r,t)=(A+V?)¢p—3¢, (1)B, (1) p>—[B,(1)]?¢>. (34
stability of the uniform(stable oscillation with negative Flo-
quet exponent against inhomogeneous fluctuatidghsmem-  Note that because of the particular symmeé#yin the SRO
ber that the solution of Ed3) is the uniform solution of Eq. phase B, (t+T/2)=B,(t). Since the coefficients of the
(1).] Let (t) be a stable solution of Eq3), which implies  above equation are periodic in time, we may use their time-
that its Floquet exponent is negative, i.e., SROor Q, or  averaged values, noting that the characteristic fife * of
SBO forQ>(,. The negative Floquet exponent is denoted¢ near the transition is much longer thdnMaking use of

by \ instead ofA. Next, let3(r,t) be the deviation from the Symmetry relatiori7), one can prove that

¥(1), ie.,

1T
_ = RAGENCET
(r,t) = () +3%(r ). 29 TJo
- 1 (7T t
The Fourier transform of(r,t) obeys = —f w*(t)exy{ —3f {[4,(5)]1?—¢2}ds|dt
TJo 0
() ={1 =3[ ()12 (1) — KZn (1), (30) =0. (35)
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Thus, Eq.(34) reduces to wheren=int(t/T). Since¢(r,t) depends ort only on time
scales much longer than it can be replaced by a variable
. {¢} ¢n(r). Thus it is easy to show that the traditional form of the
2 3_ n
P(r)=(A+V)d—be"= ¢, (36) local dynamic order parameter is simply proportional to
én(r):
with b=B2 and Q(1)
~ ALl , b, 1 [tg+T B (ty+T _
FH{¢>}=f —5 ¢+ 5(Vh)+ % dr.  (37) =_ B(s)p(r,s)ds~ = &(r,5)ds=Ben(r).
2 2 4 T, T,
= . " . . . . (41
Here,I' is a positive constant, which will be determined in
an appropriate way below. The global dynamic order parameter is simply the spatial
average ofQ,(r). Thus, any results that are proven for
B. Switching phenomenon ¢(r,t) are also proven for the traditional dynamic order pa-

The thermal noise effects near the DPT were studied IﬁameterQn
Refs.[13—-18. In the present continuum model, the thermal The Fokker-Planck equation corresponding to E3f)

noiseR(r,t) is included in Eq(2) as a Gaussian white noise takes the form

satisfying ' 5 . 5 p{¢ .
(R(r,t))=0, P{¢t} f5¢(r) 1 5em ) dr, (42
(38
(R(r,HR(r" t")y=2T8(r—r")s(t—t'), where
where (---) denotes the ensemble average. The noise p*{¢}o<e—H*{¢} (43)

strengthl” is proportional to the temperature of the system.

In Refs.[13—16 the thermal noise effects were studied byis the steady-state probability density, which has a single-
observing the time evolution of the total magnetization in(double) peak structure fof)<Q. (Q2>Q.). Here H* {4}
two-dimensional kinetic Ising systems. A switching phenom-is the single- or double-peaked renormalized potential
enon between two asymmetric oscillatory states was obfunction. For Q=Q., the well separation irH*{¢} is
served for values of) slightly aboveQ).. The origin of this  proportional to (1 —Q.)?, where 8 is the magnetization
phenomenon in the present continuous-spin m@etan be  exponent for the Ising model in the appropriate spatial
understood as follows. Inserting the expansi@8) into Eq.  dimension[13-16.

(2), and approximating the coefficients by their time aver- We postulate that the dynamics of the total magnetization
ages, we obtain (per unit volumeV),

2 3 — {¢} EE
H(r)=(A+V?)p—bp3+f(r,t)=— +f(r,t), bo()=7; | #(r.t)dr, (44)

5¢(r t)
39 for Eq. (39) takes approximately two values. This implies
where f(r,t)=[B, (t)]'R(r,t) is a Gaussian white noise that the dynamics can be modeled by the Langevin equation

with the strengtrfEB;zF. This is also chosen as the value ébo(t):Aqso(t)—b[¢0(t)]3+f0(t) (45)

of T in Egs.(36) and (37). _ _
Equation (39) is identical to the conventionalp®  Wherefy(t) is a random force with
Ginzburg-Landau equation in zero external field with a ther-

mal noise term. This equation belongs to the same universal- (fo())=0,

ity class as the Ising mod@B2]. This is the mechanism of B (46)
the DPT and the switching phenomenon observed in Refs. (fo(t)fo(t'))=2Ip8(t—t").

[13-16.

Equation (39) is the central result of this paper, which The Fokker-Planck equation is thus approximated by
makes the connection to previous work on the DPT in kinetic

Ising models. In those studies, the local dynamic order pa- . d [ P(¢g,t)
rameter has been taken as the period-averaged magnetiza- P(d’o t)= 1ﬂo&(ﬁ P*(do) 7o~ 7ds | P (47
tion, P* (o)
1 (T where
(r)=y(r,t )=—f r,t)dt, (40) .
Qn lﬁ( T . lﬁ( P*((ﬁo)oce*Ho(tbo), (48)
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@ ' ' ' ] a(t) be a variable that takes the valued (—1), provided
i ] the phase point is o, (C_) at timet. Then the temporal
02 — . . . . .

= f 1 evolution ofa(t) is approximately described by the switch-

s 1 ingd ics. The ab icture i lized by introduc-
sl R ing dynamics. The above picture is generalized by introduc
oal b ing the position-dependent varialdér,t), defined by

L | L 1 L I
0.0 1.0x10° 2.0x10° 3.0x10° " 1—a(r,t) N 1+a(r,t) 3
Yr )= ———— i (t+tg) +————¢_(t+1g),

b ' ' ' ]

® 04 ] (50
021

g oL 1 wheret, are certain initial times. The variabk(r,t) indi-
02f cates whether the local magnetizatigr{r,t) is close to
04 1 ¥, (t+tg) or _(t+ty), namely, ifa(r,t) is near+1 or

00 S —1, §(r.t) is close toy, (t+tg) or ¢_(t+ty), respec-

t tively. Without loss of generalityt§ are chosen such that

FIG. 8. Switching phenomenon generated by B).in a one-  c0s@ty)=1, and therefore we puf =0. Inserting Eq/(50)
dimensional system fof) slightly larger than the mean-field value into Eq.(2), after some algebra we rigorously get
of Q.. HereM(t) =L~ [ (x,t)(*Ndx is the total magnetization, 1
where L is the system size and (x,t)™D : a2 _ 2, 2
=(mT) " LfI*™Ty(x,s)ds. Parameters ardi=1.0, Q=12 (Q, ar, 4(:L (0= v (O a=3{[y. (V)]
~1.095), andI'=0.005. System sizes ar@ L=16Ax, (b) L
=20Ax, whereAx=0.5 is the lattice spacing. The time increment _[‘p—(t)]z})”LVZa”Lg(r’t) (51
is chosen ad\t=T/1024=0.005 113. Numerical simulations were .
carried out forL/Ax= 64, 80, 96, 112, 128, 144, 160, 176, and 192, W/
The average time between switching events was observed to in- —2R(11)
crease monotonically with. g(rt)y=———"—.

()= (1)

Furthermore, as long as the thermal noise is weak, the aver-
age switching time betweea=+1 and —1 is long. The
temporally periodic coefficients can therefore be replaced by
their average values, which reduces E5f) to

(52

where Hg (o) corresponds to the critical order-parameter
distribution for the Ising mode[32,34,35. Except for the
absence in the volume-averaggg of spatial variations, this
result is analogous to E@43) for H*{4}.

As an illustration of the switching behavior, Fig. 8 shows
the evolution of the total magnetization obtained by numeri- a=p(l—a?)a+V2a+g(rt) (53)
cally solving Eq.(2) for d=1 with Q slightly larger than the ’
mean-field value of).. The numerical integration of EqR) with
was carried out by the second-order stochastic Runge-Kutta

algorithm [33], dividing the space into lattice points with 11—
lattice spacingAx (set to 0.5 throughout this papeand us- w=7 [ (O=y-(1]
ing
1
=[BT (- ¢ _(1)]* (>0), (54)
2 Yi-1— 29+ Yj4a 4 "
(V)= T (49
(A%) Whereﬁ=?, by symmetry. The quantitié3(t) and¢ - (t)

] o o » are the same as in Sec. Il. Equati@3) again takes the form
at _the_ lattice sitgj with 'perlod|c boundary conditions. A ¢ the Ginzburg-Landau equation with a double-well poten-
switching phenomenon is clearly observed. _ __tial, with stable fixed pointa= =+ 1, provided that the spatial

The switching phenomenon can be formulated in a differy,5riation of a and the noise are neglected. Equati@3)

ent way as follows. The temporal evolutions, (t) and  ghows the switching phenomenon.
¢ _(t) of the symmetry-breaking orbits, andC_, respec-

tively, obey Eq.(28). We study the additive noise effect on
the dynamics, adding a weak noiBgas in Eq.(2). We also
include the spatial variation of the dynamical variable, add- In this section, we study the structure function in the SRO
ing V2. Consider a local bistable variable. FO>Q,, phase £<0) in a one-dimensional system. We define the
depending on the initial condition, eith€r, or C_ is se-  structure function

lected, provided the noise is absent. If the noise is suffi- o

ciently weak, the phase point is almost always on eiter Le={| ()] (55

or C_. When, and ¢_ are close, the phase point can _

switch to the other orbit through the noise effect. The abovdor the Fourier transformy, (t) of the period-averaged order
picture can be mathematically formulated as follows. Letparameter,

IV. STRUCTURE FUNCTION IN THE SRO PHASE

036109-8
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1.0x10°

1.0x107

1.0x10™

[ T Ty

1.0x10°

1.0x10°

1 FIG. 9. The structure functions for the Fourier
components of4(r,t) in a one-dimensional sys-
tem with thermal noise in the SRO regime. The
numerically obtained results are shown @s
while the theoretical result of the linearized
model(59) is shown as a solid curve. The insets

0.1 .
O‘w SRSSSLLLI LTI TT TR
00 1.0x10°
kL /2w
3.0 I .
1.0x10° —
251
2.0 of 1 4
1.0x10° | —
215k §
1S : 3
r 1.0x10° - 4
10F -
1L i I 11 1 a1h)
1.0x10° 1.0x10° i

(r,t)

t+T

=7 t Y(r,s)ds.

are log-log plots. The parameters deg system
sizeL=8192x Ax with lattice spacingAx=0.5,
| h=1.0,2=1.0 \=-0.220), and"=0.05, and
(b) L, Ax, h, andI" the same as irfa), while
] 0=1.08 \=-0.0307).

the structure function is evaluated as

(56)

We obtain |, by numerically solving Eq.(2) in a one-
dimensional system for several values @f in the SRO ) ) ) ) ]
phase as shown in Fig. 9. One characteristic feature of the'Sing the linearized form of the equation of motion for

numerically obtained structure function is thé* behavior

observed for relatively larg&. Here, |, can be evaluated
using the Landau expansion with thermal noise as follows.

By inserting Eq.(33) into Eq.(56) and using the approxima-

tion [see also Eq940) and (41)]

1 (t+T
l/l(r,t): TJ;

B [t+T

B(s)¢(r,s)d5m? t

¢(r,s)ds,

B2 (T T
|k:§ OdSJ'O ds'(¢i(s) #i (s")). (58)

¢(r,t), Eq.(39), which yields

S(r)=(N+V2)p(r,t)+f(r,t), (59

we immediately get the correlation function

F ’
(S (S)pt(s))=—e W5, (60)
Yk

(57  where

036109-9
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Y= N+ k2 (61) bifurcation of the symmetry-restoring oscillatiofSBO),
which leads to the onset of a symmetry-breaking oscillation.
is the damping rate for the fluctuatiaf(t). Substitution of Developing a Landau expansion near the bifurcation point,
Eq. (60) into Eqg. (58) yields including additive thermal noise, we obtained an effective
Ginzburg-Landau Hamiltonian for the amplitude of the SBO,
=PI TG(yT), (62 which is proportional to the dynamic order parameter that
- characterizes the DPT. This effective Hamiltonian has the

wherep=B?B~2 and same form as the standagd Ginzburg-Landau Hamiltonian

in zero external field, which describes the long-range prop-

1-e % erties of the Ising model in the critical regid®2]. This
X ) (63) result implies that the DPT belongs to the same universality
class as the equilibrium Ising model in zero external field, in

is a scaling function. We thus find that the structure function@greement with recent high-precision numerical results from
I, behaves asymptotically ag~ y, > for 9 T<1 and as Monte Carlo simulation§13-16, as well as with a symme-
N,yk—ZT—l for 7 T>1. In the former case, the relatidp tryll?rglljmenthwhllgh states that tlrlleteqrt:lhbtrluml:s:ng ur][|ver—t
=, ! is identical to the Ornstein-Zarnike form which holds sallty class should encompass a7 siochastic cefiliar automata

for T—0. The latter characteristic explains tke* behavior W't.rll IS';: g bup—d?wn Ifymnlweéry[Sog. K d here |
in the largek regime. This unexpected behavior originates o the best of our knowledge, the work presented here Is

' . X the first in which an effective Hamiltonian has been explic-
from the temporal averaging procedu&s), which ensures

that the interfaces between regions of positive and ne ativitly derived for a far-from-equilibrium phase transition, con-
. 9 P 9 ﬁrming that the transition belongs to the same universality
values ofyy(t) arenot thin. As a resultl, does not obey

N , g - (d+1) X X class as the equilibrium Ising model in zero field. The result
Pofgd s law,” 1~k [36], which would yield I, tepresents a significant expansion of the realm of validity of
~k™“ for the present case af=1.

: - e _ symmetry arguments from equilibrium to nonequilibrium
The solid curves in Fig. 9 correspond to the theoretlcalphase transitions.

result(62) and(63). Although this linear model for the fluc-
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