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Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field
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The Ginzburg-Landau model below its critical temperature in a temporally oscillating external field is
studied both theoretically and numerically. As the frequency or the amplitude of the external field is changed,
a nonequilibrium phase transition is observed. This transition separates spatially uniform, symmetry-restoring
oscillations from symmetry-breaking oscillations. Near the transition a perturbation theory is developed, and a
switching phenomenon is found in the symmetry-broken phase. Our results confirm the equivalence of the
present transition to that found in Monte Carlo simulations of kinetic Ising systems in oscillating fields,
demonstrating that the nonequilibrium phase transition in both cases belongs to the universality class of the
equilibrium Ising model in zero field. This conclusion is in agreement with symmetry arguments@G. Grinstein,
C. Jayaprakash, and Y. He, Phys. Rev. Lett.55, 2527~1985!# and recent numerical results@G. Korniss, C. J.
White, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E63, 016120~2001!#. Furthermore, a theoretical result
for the structure function of the local magnetization with thermal noise, based on the Ornstein-Zernike ap-
proximation, agrees well with numerical results in one dimension.
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I. INTRODUCTION

Bistable systems that are driven between their two st
by a periodically oscillating external force are common,
both nature and technology. A few examples are hyster
in ferromagnetic@1–4# and ferroelectric@5–7# materials
driven by oscillating applied fields, electrochemical ads
bate systems driven across a phase transition by an osc
ing electrode potential@8–10#, and liquid crystals driven
through a phase transition by pressure oscillations@11#. In
this paper we use magnetic language, henceforth referrin
the order parameter as the magnetization and the oscilla
force as the magnetic field.

When the field oscillates at a sufficiently low frequenc
the driven system essentially follows the field, showing
symmetry-restoring oscillation~SRO! with the same period
provided that the amplitude of the external force is larg
than a critical value that depends on the temperature and
system’s spatial dimension. At high driving frequencies,
the other hand, the system is unable to follow the field a
instead settles down to a symmetry-breaking oscillat
~SBO! around one or the other of its zero-field stable sta

Over the last decade it has become evident that the bo
ary between the SRO and SBO regimes corresponds
singularity that appears to have all the hallmarks of a ge
ine second-order phase transition. It is therefore appropr
to consider the SRO and SBO asdynamic phasesof this
far-from-equilibrium system. Characteristic features of t
nonequilibrium phase transition include a power-law dep
dence of the amplitude of the SBO on the amount by wh

*Electronic address: fujisaka@acs.i.kyoto-u.ac.jp
†Electronic address: tutu@acs.i.kyoto-u.ac.jp
‡Electronic address: rikvold@csit.fsu.edu
1063-651X/2001/63~3!/036109~11!/$15.00 63 0361
es

is

-
at-

to
ng

,
a

r
he
n
d
n
s.
d-
a
-
te

s
-

h

the frequency V exceeds its field- and temperatur
dependent critical valueVc , as well as critical slowing down
@12#. The probability density of the period-averaged magn
tization exhibits a one-peak structure forV,Vc and a two-
peak structure forV.Vc @13–17#. In spatially extended
bistable systems, such as the two-dimensional kinetic Is
model below its critical temperature, the transition also d
plays a divergent correlation length and finite-size scal
properties analogous to those familiar from equilibriu
phase transitions@13–17#. It has become common to refer t
this symmetry-breaking transition as the ‘‘dynamic pha
transition’’ ~DPT!.

The DPT was first observed in numerical solutions o
deterministic mean-field equation of motion for a ferroma
net in an oscillating field@18,19#, and it has subsequentl
been seen and studied in numerous Monte Carlo~MC! simu-
lations of kinetic Ising systems@12–17,20–25#, as well as in
further mean-field studies@12,21,23,26,27#. It may also have
been observed experimentally in ultrathin Co films
Cu~100! @3,4#. Reviews of earlier research on the DPT a
related phenomena are found in Refs.@28,29#.

Finite-size scaling analysis of MC data for the DPT in t
two-dimensional kinetic Ising model at subcritical tempe
tures provides strong numerical evidence that this none
librium critical phenomenon belongs to the same universa
class as the equilibrium phase transition in the tw
dimensional Ising model in zero field@13–16#. While this
result may seem surprising at first, it is consistent with
symmetry argument by Grinstein, Jayaprakash, and He@30#.
This argument states that continuous ordering transition
fully probabilistic cellular automata with Ising-like ‘‘up-
down’’ symmetry ~of which the kinetic Ising model in an
oscillating field is an example! should fall in the same uni-
versality class as the corresponding Ising model in equi
rium. This implies that such a cellular automaton should p
©2001 The American Physical Society09-1
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sess an underlying coarse-grained effective Hamiltonian
sufficiently large length scales, which determines its univ
sality class.

The purpose of the present paper is to elucidate the or
of the DPT and to clarify the statistical characteristics of
dynamics near the DPT, subject to thermal noise. To
effect we consider a time-dependent Ginzburg-Land
model with thermal noise. The equation of motion for t
noise-free version of this model is

ċ~r ,t !5c2c31¹2c1h cos~Vt !, ~1!

where c(r ,t) is the continuous scalar magnetization fie
andh andV are the amplitude and frequency of the spatia
uniform external magnetic field, respectively. In zero appl
field, Eq. ~1! is identical to the conventional Ginzburg
Landau equation for the Ising modelbelow its critical tem-
perature. The effects of thermal noise on the system are
pressed by the stochastic differential equation

ċ~r ,t !5c2c31¹2c1h cos~Vt !1R~r ,t !, ~2!

whereR(r ,t) is a Gaussian white thermal noise. In this pap
we show that Eqs.~1! and ~2! give rise to a bifurcation line
in the (V,h) plane. Near this bifurcation line the equatio
yield an effective Hamiltonian for adynamic order param-
eter. This effective Hamiltonian is in the same universal
class as the equilibrium Ising model in zero field, and
existence provides explicit confirmation of the symmetry
gument of Ref.@30# for this far-from-equilibrium system.

Equations~1! and ~2! with h50 give rise to two degen
erate ordered solutions only for systems of spatial dimens
d>2 at temperatures below criticality. These conditions w
be assumed hereafter, unless otherwise explicitly stated

The present paper is organized as follows. In Sec. II
show that the spatially uniform oscillation of Eq.~1! under-
goes a bifurcation asV is increased, which separates t
symmetry-restoring and symmetry-breaking dynamic pha
In Sec. III we develop a Landau expansion near the bifur
tion, which is used to explain the switching phenomen
observed in a system subject to thermal noise. In Sec. IV
show that theoretical results for spatial power spectra of s
fluctuations~structure functions! obtained by the Landau ex
pansion are in good agreement with numerical experime
for a one-dimensional system. A summary and conclusi
are given in Sec. V.

II. BIFURCATION OF THE
SYMMETRY-RESTORING OSCILLATION

In this section we concentrate on the uniform solutions
the noise-free system described by Eq.~1!. The effects of
spatial fluctuations and thermal noise will be discussed
Sec. III.

It is easy to see that Eq.~1! has a spatially uniform oscil
lation,

ċ~ t !5c2c31h cos~Vt !, ~3!
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provided that spatially periodic boundary conditions a
used. Without loss of generality,h andV are taken as posi
tive. Eventually,c(t) always exhibits a periodic oscillation
of frequencyV for any choice ofh, V, and the initial value
c(0). It exhibits no other periodic or chaotic oscillation
This is so because the dynamical system~3! is dissipative
and has only two degrees of freedom.

One should be careful when discussing the dynamics n
V50. By shifting time ast→t2p/(2V), Eq. ~3! reduces to

ċ~ t !5c2c31h sin~Vt !. ~4!

If one putsV50 in Eqs.~3! and ~4! while keepingh finite,
they have different fixed points. The periodT ([2p/V) of
the applied field tends to infinity asV→0. One should there-
fore discuss the long-time behavior ofc (t@T) at finiteV,
and then take the limitV→0. The above discrepancy orig
nates from the interchange of the limitst→` andV→0. If
one takes the limits correctly, the long-time behaviors
Eqs.~3! and ~4! give the same results.

For h50, c(t) eventually approaches one of the stab
fixed pointsc0561. Then, under an applied fieldh cos(Vt)
with a small amplitude, it is easy to see thatc(t) exhibits a
periodic oscillation. In fact, to first order inh, Eq. ~3! is
solved by

c~ t !5611
h

41V2
@2 cos~Vt !1V sin~Vt !# ~5!

for t→`. This is a SBO sincec(t) oscillates near eitherc
511 or 21, depending on the initial condition. We thu
expect that Eq.~3! exhibits a symmetry-breaking periodi
oscillation in the regime of relatively weakh.

Let c(t) be a solution of Eq.~3!. It is then easy to show
that ĉ(t) given by

ĉ~ t !52cS t1
T

2D ~6!

is also always a solution of Eq.~3!, including even the tran-
sient process. As a special case@see Eq.~27! below#, Eq. ~3!
has a particular solution with the symmetry

c~ t !52cS t1
T

2D . ~7!

If the dynamical behavior satisfies the symmetry~7!, one
obtains

E
0

T

c~ t !ei l Vtdt50 ~ l 50,62,64, . . . !. ~8!

However, the fact that the system~3! has the symmetry~7!
does not necessarily mean that the dynamical behavior
ways exhibits this symmetry. In fact, as discussed above
small h and as shown below, Eq.~3! has a stable symmetry
breaking solution for a certain range ofh andV.

As discussed above, the dynamics in a weak external fi
shows a SBO. This implies that the SRO, if it exists, sho
9-2
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FIG. 1. Limit-cycle attractors for paramete
values ~a! h51.0, V51.08 and~b! h51.0, V
51.1. The phase points move clockwise. In~a!
(V,Vc'1.095), there stably exists only on
limit cycle, which is symmetric in the sense tha
Eq. ~7! is satisfied. In~b! (V.Vc), the symmet-
ric limit cycle denoted by the dashed curve
unstable, and there appear two stable nonsy
metric limit cyclesC1 andC2 .
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do so for a relatively large amplitude of the external fie
This also suggests that there should exist a transition
tween the SBO and the SRO, provided that the SRO sta
exists. This is an immediate consequence of the symm
consideration.

For the moment, let us consider the parameter valueh
51.0, andV51.08 and 1.1. For these parameter values,
system has attractors as shown in Fig. 1. Throughout
paper, the numerical integration of Eq.~3! is carried out by
using the fourth-order Runge-Kutta algorithm with the tim
incrementDt5T/1024 for all frequencies. The attractors a
limit cycles of periodT. They have the symmetry~7! for V
51.08, but are asymmetric forV51.1. The above consider
ations suggest the existence of a phase transition betw
these different characteristic oscillations. Figure 2 shows
hysteresis loops, i.e., the dependence ofc(t) on h(t)
[h cos(Vt) for V below and aboveVc , the critical fre-
quency separating the interchange of the symmetric and
symmetric oscillations. Numerically, we findVc'1.095 for
h51.0.

Next we consider the stability of the attractor with th
symmetry~7!, shown in Fig. 1, asV is increased at fixedh.
The stability of a periodic oscillation is discussed as follow
Let c(t) be a particular solution of Eq.~3! on an attractor,
which may be either stable or unstable. In order to exam
its linear stability, we seek the temporal evolution of t
deviationdc(t) from this solution. Then,dc(t) obeys the
equation of motion

dċ~ t !5$123@c~ t !#2%dc~ t !. ~9!
03610
.
e-
ly
ry

e
is

en
e

n-

.

e

Sincec(t) is periodic with periodT, dc(t) is solved as

dc~ t !5B~ t !eLtdc~0!. ~10!

If we define

L5123c 2̄5123
1

TE0

T

@c~s!#2ds, ~11!

then

B~ t !5expF23E
0

t

$@c~ t8!#22c 2̄%dt8G ~12!

is a periodic function of periodT, i.e., B(t1T)5B(t). Here
we have defined the period average off (t) as f (t)
5T21*0

Tf (t1s)ds. The results~10!–~12! follow from the
Floquet theorem@31#. The quantityL is called the Floquet
exponent and indicates the stability of the periodic osci
tion under consideration, i.e.,c(t) is linearly stable~un-
stable! if L,0 (.0). Numerical results forL calculated by
Eq. ~11! are shown in Fig. 3. ForV below Vc , the critical
value for a givenh, L takes a negative value, which is de
noted by l. The limit cycle for V,Vc is symmetric as
shown in Figs. 1~a! and 2~a!. As V is gradually increased
the Floquet exponent approaches zero and again tak
negative value forV.Vc . Figures 1~b! and 2~b! show the
stable attractors~solid curves! corresponding to the limit
cycles forV.Vc . Figure 4 shows the stability regions o
the SRO and the SBO. In the SBO region, one finds t
-

ic

t

FIG. 2. Hysteresis loops of limit-cycle attrac
tors, i.e., c(t) vs h(t)5h cos(Vt) for ~a! h
51.0, V51.08 and ~b! h51.0, V51.2. The
phase points move counterclockwise. In~a! (V
,Vc'1.095), there is only one stable symmetr
limit cycle. In ~b! (V.Vc), the symmetric limit
cycle ~dashed curve! is unstable, and there exis
two stable nonsymmetric limit cyclesC1 and
C2 .
9-3
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H. FUJISAKA, H. TUTU, AND P. A. RIKVOLD PHYSICAL REVIEW E63 036109
there exist two attractorsC2 andC1 , one of which is cho-
sen depending on the initial condition. ForV.Vc , there is
also a symmetry-restoringunstablelimit cycle, whose Flo-
quet exponent is denoted bylu in Fig. 3, and whose trajec
tory is depicted by the dashed curves in Figs. 1~b! and 2~b!.
The transition atVc is continuous, as is expected from th
frequency dependence of the Floquet exponent shown in
3.

The unstable limit cycle, i.e., the SRO forV.Vc , is
numerically obtained as follows. Taking an initial valuecn
at time tn5nT, then integrating Eq.~3! until tn115tn1T,
we obtaincn11. In this way we get thecn11 vs cn curve,

cn115g~cn!. ~13!

FIG. 3. The Floquet exponentL, shown vsV for h51.0. For
V,Vc , the limit cycle is symmetric and stable. ForV.Vc , the
dashed line is the Floquet exponent for the unstable symmetric
cycle, and the solid line is the exponent for the stable symme
breaking limit cycle. For details on the calculation of Floquet e
ponents, see the text.

FIG. 4. The bifurcation curve separating the symmetry-restor
oscillation ~SRO! and the symmetry-breaking oscillation~SBO!.
The numerically obtained points are represented as data points
the approximate theoretical result~21! as a solid curve.
03610
ig.

Examples of numerically obtainedg(c) are shown in Fig. 5.
Figure 5~a! is for V,Vc , and Fig. 5~b! is for V.Vc . De-
pending onV, there are one or three fixed pointsc f satisfy-
ing c f5g(c f), which correspond to cross sections of lim
cycle attractors. The stability of a limit cycle is determine
by the slope ofg(c) at c5c f , i.e., the Floquet exponent i
given by

L5
1

T
lnug8~c f !u. ~14!

The unstable periodic orbit shown in Figs. 1~b! and 2~b! is
the one numerically integrated with the initial valuecu , the
unstable fixed point. The temporal evolutions of one unsta
and two stable oscillations are shown in Fig. 6. One sho
note that, if the stroboscopic map is constructed for tim
tn5t1nT, the form of g(c) depends ont. However, the
number of fixed points ofcn115g(cn) and the correspond
ing slopes, which yield the Floquet exponents for the fix
points, are independent oft.

it
-

-

g

nd

FIG. 5. Stroboscopic mapscn[c(n32p/V) for ~a! V51.08
(,Vc) and ~b! V51.2 (.Vc) with h51.0. For V.Vc , there
appear two stable, nonsymmetric limit cycles.

FIG. 6. Temporal evolutions of the stable orbitsC1 and C2

~solid curves! and the unstable orbit~dashed curve! in the SBO
regime for h51.0 (,Vc) and V51.2 (.Vc). The dot-dashed
curve representsh(t).
9-4
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The bifurcation pointVc depends onh. The theoretical
bifurcation curve given by the solid curve in Fig. 4 is dete
mined as follows. We first expandc(t) as the Fourier serie

c~ t !5 (
l 52`

`

c l ~ t !ei l Vt, ~15!

wherec2l 5c l* . The temporal evolution of the coefficien
$c l (t)% is assumed to be much slower than the time scalT.
Inserting Eq.~15! into Eq.~3! and comparing the coefficient
on both sides of the equation, we obtain

ċ l 1 i l Vc l 5c l 2(
m

(
n

cmcnc l 2m2n

1
1

2
~d l ,11d l ,21!h. ~16!

From the symmetry argument, Eq.~3! may have a solution
with the symmetry~7!. If the limit cycle under consideration
is symmetric, we find from Eq.~8! that

c l 50 for l 50,62,64, . . . . ~17!

We now consider the stability of this symmetric oscillatio
As the simplest nontrivial approximation, we use the trun
tion l 50 and61, which yields

ċ05@126uc1u22c0
2#c0 , ~18!

ċ11 iVc15@123uc1u223c0
2#c11

1

2
h. ~19!

The above equations have a SRO (c050) provided that 1
26uc1u2,0. On the other hand, for 126uc1u2.0 the
steady-state value ofc0 does not vanish, which implies th
emergence of a SBO. Therefore, we find that the bound
between the regions of stability of the SRO and SBO
determined byuc1

ssu25 1
6 . Combining this with the steady

state value ofc1
ss obtained from Eq.~19!, the bifurcation

point Vc for fixed h is determined by

Vc5A3

2 S h22
1

6D ~20!

or, equivalently,

h5A2

3 S 1

4
1Vc

2D . ~21!

One finds that this kind of bifurcation is observed forh larger
than a critical value, 1/A6 in the above approximation. Th
curve given by Eq.~21! corresponds to the transition line
which in Fig. 4 is compared with results from numeric
integration of Eq.~3!. For V,Vc , there is only one type o
periodic motion, namely, the symmetry-restoring one. F
V.Vc , on the other hand, there are two types of oscillati
03610
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one is the unstable SRO, and the other is represented b
two stable SBOs, one of which is observed for a given init
condition.

Here a comment on the critical value ofh under a static
field, V50, should be added. The above approximat
yields the critical value 1/A6'0.408. On the other hand, th
standard calculation in mean-field theory yields the spino
field as the field where the metastable minimum in thec4

potential disappears. This condition requires that the eq
tions

ċ5c2c31h50,
~22!

]ċ

]c
5123c250

are simultaneously satisfied. The second equation g
cspinodal561/A3 which, when inserted into the first equa
tion, yieldshspinodal52A3/9'0.385. This value is about 6%
below that obtained in the above discussion. We carried
numerical calculations for values ofV as small as 0.05. The
numerical results seem to be closer tohspinodal than to the
present approximate value 1/A6. However, calculations a
even smallerV, which were not feasible in the present stud
would be needed to reach a firm conclusion. A sharp
crease of the critical value ofh asV is decreased may sug
gest the possibility that the transition curve has a kind
singularity, i.e., thatdh/dV might diverge asV approaches
zero @26#.

Next we evaluate how the amplitude of the SBO develo
for V aboveVc . The steady-state valuesc0

ss and c1
ss are

obtained by settingc0
ss5sinu and c1

ss5621/2(cosu)eia. For
V,Vc , u50, while u is small forV*Vc . A short calcu-
lation shows that the order parameterc0

ss is asymptotically
given by

c0
ss56c1AV2Vc ~23!

with c15A8Vc /(4Vc
2111). The amplitude and phase ofc1

ss

are given as

uc1
ssu5

1

A6
F12

1

2
c1

2~V2Vc!G ~24!

and

a5ac1c2~V2Vc!, ~25!

respectively, where

cosac5
21

A4Vc
211

,

sinac5
22Vc

A4Vc
211

, ~26!

c25
22

4Vc
2111

.

9-5



B
an

o

al

en
he

ed

a-

tor
e
n-
any

ed

e
h

x-
by

e-

d

H. FUJISAKA, H. TUTU, AND P. A. RIKVOLD PHYSICAL REVIEW E63 036109
The V dependences of the amplitudes of the SRO and S
are shown in Fig. 7, which was obtained from the stable
unstable fixed points of Eq.~13!.

Numerical integration shows that the time evolutions
the symmetry-breaking orbitsC1 andC2 , which arec1(t)
andc2(t), respectively, are related as

c1~ t !52c2S t1
T

2D ,

~27!

c2~ t !52c1S t1
T

2D
~see Fig. 6!, where

ċ6~ t !5c6~ t !2@c6~ t !#31h cos~Vt !. ~28!

The symmetry~27! is just a particular case of the gener
symmetry relation~6!.

We find that the stable limit cycle of Eq.~3! for V,Vc
(V.Vc) is a symmetry-restoring~symmetry-breaking! os-
cillation, and that one of the two stable SBOs is chos
depending on the initial condition. Next, we examine t
stability of the uniform~stable! oscillation with negative Flo-
quet exponent against inhomogeneous fluctuations.@Remem-
ber that the solution of Eq.~3! is the uniform solution of Eq.
~1!.# Let c(t) be a stable solution of Eq.~3!, which implies
that its Floquet exponent is negative, i.e., SRO forV,Vc or
SBO for V.Vc . The negative Floquet exponent is denot
by l instead ofL. Next, let c̃(r ,t) be the deviation from
c(t), i.e.,

c~r ,t !5c~ t !1c̃~r ,t !. ~29!

The Fourier transform ofc̃(r ,t) obeys

ċ̃k~ t !5$123@c~ t !#2%c̃k~ t !2k2c̃k~ t !, ~30!

FIG. 7. Bifurcation diagram ofcn@[c(n32p/V)#, i.e., the
fixed points of the map~13! for h51.0. ForV,Vc'1.095, there is
one unique fixed point. ForV.Vc , there exist one unstable fixe
point ~dashed line! and two stable fixed points~solid curves!.
03610
O
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provided that the deviation is sufficiently small. This equ
tion is solved as

c̃k~ t !5B~ t !elktc̃k~0!, ~31!

whereB(t) is again a periodic function and

lk5l2k2 ~32!

is the linear growth rate of the Fourier mode at wave vec
k. Sincel,0, lk is always negative, which implies that th
uniform oscillation with negative Floquet exponent is li
early stable against inhomogeneous fluctuations with
wave vector. This implies that the system~1! eventually ap-
proaches a spatially uniform oscillatory motion, provid
that there exists no other stable dynamical behavior.

For simplicity, the values ofVc(h), obtained above from
the spatially uniform solution, will be referred to as th
mean-field valuesof Vc . In spatially extended systems wit
thermal noise, the actual values ofVc are renormalized by
fluctuations.

III. LANDAU EXPANSION AND THERMAL
NOISE EFFECTS

We now move on to the discussion of the spatially e
tended system with local interactions, which is described
Eqs.~1! and~2!. The noise-free case, Eq.~1!, is discussed in
Sec. III A. The effects of thermal noise, described by Eq.~2!,
are considered in Sec. III B.

A. Landau expansion near the bifurcation point

Let c* (t) be the spatially uniform SRO that obeys Eq.~3!
and satisfies the symmetry~7!, and letL be its Floquet ex-
ponent, which is calculated by Eq.~11! with c(t)5c* (t). It
is given by L5l(,0) for V,Vc , and L5lu(.0) for
V.Vc , in the notation used in Fig. 3. Expandingc(r ,t)
around this SRO as

c~r ,t !5c* ~ t !1B* ~ t !f~r ,t !, ~33!

whereB* (t) is defined by Eq.~12! with c(t)5c* (t), and
inserting this into Eq.~1!, we immediately find

ḟ~r ,t !5~L1¹2!f23c* ~ t !B* ~ t !f22@B* ~ t !#2f3. ~34!

Note that because of the particular symmetry~7! in the SRO
phase B* (t1T/2)5B* (t). Since the coefficients of the
above equation are periodic in time, we may use their tim
averaged values, noting that the characteristic timeuLu21 of
f near the transition is much longer thanT. Making use of
the symmetry relation~7!, one can prove that

1

TE0

T

c* (t)B* (t)dt

5
1

TE0

T

c* (t)expF23E
0

t

$@c* ~s!#22c
*
2̄ } dsGdt

50. ~35!
9-6
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Thus, Eq.~34! reduces to

ḟ~r ,t !5~L1¹2!f2bf352G̃
dH$f%

df
~36!

with b5B
*
2̄ and

G̃H$f%5E F2
L

2
f21

1

2
~¹f!21

b

4
f4Gdr . ~37!

Here, G̃ is a positive constant, which will be determined
an appropriate way below.

B. Switching phenomenon

The thermal noise effects near the DPT were studied
Refs.@13–16#. In the present continuum model, the therm
noiseR(r ,t) is included in Eq.~2! as a Gaussian white nois
satisfying

^R~r ,t !&50,
~38!

^R~r ,t !R~r 8,t8!&52Gd~r2r 8!d~ t2t8!,

where ^•••& denotes the ensemble average. The no
strengthG is proportional to the temperature of the syste
In Refs. @13–16# the thermal noise effects were studied
observing the time evolution of the total magnetization
two-dimensional kinetic Ising systems. A switching pheno
enon between two asymmetric oscillatory states was
served for values ofV slightly aboveVc . The origin of this
phenomenon in the present continuous-spin model~2! can be
understood as follows. Inserting the expansion~33! into Eq.
~2!, and approximating the coefficients by their time av
ages, we obtain

ḟ~r ,t !5~L1¹2!f2bf31 f ~r ,t !52G̃
dH$f%

df~r ,t !
1 f ~r ,t !,

~39!

where f (r ,t)5@B* (t)#21R(r ,t) is a Gaussian white nois

with the strengthG̃[B
*
22̄G. This is also chosen as the valu

of G̃ in Eqs.~36! and ~37!.
Equation ~39! is identical to the conventionalf4

Ginzburg-Landau equation in zero external field with a th
mal noise term. This equation belongs to the same univer
ity class as the Ising model@32#. This is the mechanism o
the DPT and the switching phenomenon observed in R
@13–16#.

Equation ~39! is the central result of this paper, whic
makes the connection to previous work on the DPT in kine
Ising models. In those studies, the local dynamic order
rameter has been taken as the period-averaged magn
tion,

Qn~r !5c~r ,tn!5
1

TEtn

tn1T

c~r ,t !dt, ~40!
03610
in
l

e
.

-
b-

-

-
al-
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-
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wheren5 int(t/T). Sincef(r ,t) depends ont only on time
scales much longer thanT, it can be replaced by a variabl
fn(r ). Thus it is easy to show that the traditional form of th
local dynamic order parameter is simply proportional
fn(r ):

Qn~r !

5
1

TEtn

tn1T

B~s!f~r ,s!ds'
B̄

TEtn

tn1T

f~r ,s!ds5B̄fn~r !.

~41!

The global dynamic order parameter is simply the spa
average ofQn(r ). Thus, any results that are proven f
f(r ,t) are also proven for the traditional dynamic order p
rameterQn .

The Fokker-Planck equation corresponding to Eq.~39!
takes the form

]

]t
P$f,t%5G̃E d

df~r ! F P* $f%
d

df~r ! S P$f,t%

P* $f%
D Gdr , ~42!

where

P* $f%}e2H* $f% ~43!

is the steady-state probability density, which has a sing
~double-! peak structure forV,Vc (V.Vc). HereH* $f%
is the single- or double-peaked renormalized poten
function. For V*Vc , the well separation inH* $f% is
proportional to (V2Vc)

b, where b is the magnetization
exponent for the Ising model in the appropriate spa
dimension@13–16#.

We postulate that the dynamics of the total magnetizat
~per unit volumeV),

f0~ t ![
1

VE f~r ,t !dr , ~44!

for Eq. ~39! takes approximately two values. This implie
that the dynamics can be modeled by the Langevin equa

ḟ0~ t !5Lf0~ t !2b@f0~ t !#31 f 0~ t !, ~45!

where f 0(t) is a random force with

^ f 0~ t !&50,
~46!

^ f 0~ t ! f 0~ t8!&52G̃0d~ t2t8!.

The Fokker-Planck equation is thus approximated by

]

]t
P~f0 ,t !5G0

]

]f0
F P* ~f0!

]

]f0
S P~f0 ,t !

P* ~f0!
D G , ~47!

where

P* ~f0!}e2H0* (f0), ~48!
9-7
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where H0* (f0) corresponds to the critical order-parame
distribution for the Ising model@32,34,35#. Except for the
absence in the volume-averagedf0 of spatial variations, this
result is analogous to Eq.~43! for H* $f%.

As an illustration of the switching behavior, Fig. 8 show
the evolution of the total magnetization obtained by nume
cally solving Eq.~2! for d51 with V slightly larger than the
mean-field value ofVc . The numerical integration of Eq.~2!
was carried out by the second-order stochastic Runge-K
algorithm @33#, dividing the space into lattice points wit
lattice spacingDx ~set to 0.5 throughout this paper! and us-
ing

~¹2c! j5
c j 2122c j1c j 11

~Dx!2
~49!

at the lattice sitej with periodic boundary conditions. A
switching phenomenon is clearly observed.

The switching phenomenon can be formulated in a diff
ent way as follows. The temporal evolutionsc1(t) and
c2(t) of the symmetry-breaking orbitsC1 andC2 , respec-
tively, obey Eq.~28!. We study the additive noise effect o
the dynamics, adding a weak noiseR, as in Eq.~2!. We also
include the spatial variation of the dynamical variable, ad
ing ¹2c. Consider a local bistable variable. ForV.Vc ,
depending on the initial condition, eitherC1 or C2 is se-
lected, provided the noise is absent. If the noise is su
ciently weak, the phase point is almost always on eitherC1

or C2 . When c1 and c2 are close, the phase point ca
switch to the other orbit through the noise effect. The abo
picture can be mathematically formulated as follows. L

FIG. 8. Switching phenomenon generated by Eq.~2! in a one-
dimensional system forV slightly larger than the mean-field valu
of Vc . HereM (t)5L21*c(x,t)(16T)dx is the total magnetization
where L is the system size and c(x,t)(mT)

5(mT)21* t
t1mTc(x,s)ds. Parameters areh51.0, V51.2 (Vc

'1.095), andG50.005. System sizes are~a! L516Dx, ~b! L
520Dx, whereDx50.5 is the lattice spacing. The time increme
is chosen asDt5T/102450.005 113. Numerical simulations wer
carried out forL/Dx564, 80, 96, 112, 128, 144, 160, 176, and 19
The average time between switching events was observed to
crease monotonically withL.
03610
r

i-

tta
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-

e
t

a(t) be a variable that takes the values11 (21), provided
the phase point is onC1 (C2) at time t. Then the temporal
evolution ofa(t) is approximately described by the switch
ing dynamics. The above picture is generalized by introd
ing the position-dependent variablea(r ,t), defined by

c~r ,t !5
12a~r ,t !

2
c1~ t1t0

1!1
11a~r ,t !

2
c2~ t1t0

2!,

~50!

wheret0
6 are certain initial times. The variablea(r ,t) indi-

cates whether the local magnetizationc(r ,t) is close to
c1(t1t0

1) or c2(t1t0
2), namely, ifa(r ,t) is near11 or

21, c(r ,t) is close toc1(t1t0
1) or c2(t1t0

2), respec-
tively. Without loss of generality,t0

6 are chosen such tha
cos(Vt0

6)51, and therefore we putt0
650. Inserting Eq.~50!

into Eq. ~2!, after some algebra we rigorously get

ȧ~r ,t !5
1

4
~12a2!„@c1~ t !2c2~ t !#2a23$@c1~ t !#2

2@c2~ t !#2%…1¹2a1g~r ,t ! ~51!

with

g~r ,t !5
22R~r ,t !

c1~ t !2c2~ t !
. ~52!

Furthermore, as long as the thermal noise is weak, the a
age switching time betweena511 and 21 is long. The
temporally periodic coefficients can therefore be replaced
their average values, which reduces Eq.~51! to

ȧ5m~12a2!a1¹2a1g~r ,t ! ~53!

with

m5
1

4
@c1~ t !2c2~ t !#2

5
1

4
@B~ t !#2@f1~ t !2f2~ t !#2 ~.0!, ~54!

wherec̄1
2 5c̄2

2 by symmetry. The quantitiesB(t) andf6(t)
are the same as in Sec. II. Equation~53! again takes the form
of the Ginzburg-Landau equation with a double-well pote
tial, with stable fixed pointsa561, provided that the spatia
variation of a and the noise are neglected. Equation~53!
shows the switching phenomenon.

IV. STRUCTURE FUNCTION IN THE SRO PHASE

In this section, we study the structure function in the SR
phase (l,0) in a one-dimensional system. We define t
structure function

I k5^uck~ t !u2& ~55!

for the Fourier transformck(t) of the period-averaged orde
parameter,

.
in-
9-8
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FIG. 9. The structure functions for the Fourie
components ofc(r ,t) in a one-dimensional sys
tem with thermal noise in the SRO regime. Th
numerically obtained results are shown ass,
while the theoretical result of the linearize
model ~59! is shown as a solid curve. The inse
are log-log plots. The parameters are~a! system
sizeL581923Dx with lattice spacingDx50.5,
h51.0, V51.0 (l520.220), andG50.05, and
~b! L, Dx, h, and G the same as in~a!, while
V51.08 (l520.0307).
th

w
-

or
c~r ,t ![
1

TEt

t1T

c~r ,s!ds. ~56!

We obtain I k by numerically solving Eq.~2! in a one-
dimensional system for several values ofV in the SRO
phase as shown in Fig. 9. One characteristic feature of
numerically obtained structure function is thek24 behavior
observed for relatively largek. Here, I k can be evaluated
using the Landau expansion with thermal noise as follo
By inserting Eq.~33! into Eq.~56! and using the approxima
tion @see also Eqs.~40! and ~41!#

c~r ,t !5
1

TEt

t1T

B~s!f~r ,s!ds'
B̄

TEt

t1T

f~r ,s!ds,

~57!
03610
e

s.

the structure function is evaluated as

I k5
B2̄

T2E0

T

dsE
0

T

ds8^fk~s!fk* ~s8!&. ~58!

Using the linearized form of the equation of motion f
f(r ,t), Eq. ~39!, which yields

ḟ~r ,t !5~l1¹2!f~r ,t !1 f ~r ,t !, ~59!

we immediately get the correlation function

^fk~s!fk* ~s8!&5
G̃

gk
e2gkus2s8u, ~60!

where
9-9
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gk5ulu1k2 ~61!

is the damping rate for the fluctuationfk(t). Substitution of
Eq. ~60! into Eq. ~58! yields

I k5pGTG~gkT!, ~62!

wherep5B̄2B22̄ and

G~x!5
2

x2 S 12
12e2x

x D ~63!

is a scaling function. We thus find that the structure funct
I k behaves asymptotically asI k;gk

21 for gkT!1 and as
;gk

22T21 for gkT@1. In the former case, the relationI k

}gk
21 is identical to the Ornstein-Zarnike form which hold

for T→0. The latter characteristic explains thek24 behavior
in the large-k regime. This unexpected behavior originat
from the temporal averaging procedure~56!, which ensures
that the interfaces between regions of positive and nega
values ofck(t) are not thin. As a result,I k does not obey
‘‘Porod’s law,’’ I k;k2(d11) @36#, which would yield I k
;k22 for the present case ofd51.

The solid curves in Fig. 9 correspond to the theoreti
result~62! and~63!. Although this linear model for the fluc
tuations agrees quite well with the numerical simulatio
particularly in the large-wave-number regime and for stro
thermal noise, nonlinear fluctuations play a significant r
and the linear model eventually breaks down, especially
the small-wave-number regime.

V. SUMMARY AND CONCLUSION

In this paper we used a time-dependent Ginzburg Lan
model in a temporally oscillating external field to understa
the dynamic phase transition~DPT! observed in Monte Carlo
simulations of the corresponding kinetic Ising model bel
its critical temperature@12–17,21–24,28,29#. Analyzing the
stability of spatially uniform oscillations~SRO!, we found a
p

l.

03610
n

ve

l

,
g
e
in

u
d

bifurcation of the symmetry-restoring oscillation~SBO!,
which leads to the onset of a symmetry-breaking oscillati
Developing a Landau expansion near the bifurcation po
including additive thermal noise, we obtained an effect
Ginzburg-Landau Hamiltonian for the amplitude of the SB
which is proportional to the dynamic order parameter t
characterizes the DPT. This effective Hamiltonian has
same form as the standardf4 Ginzburg-Landau Hamiltonian
in zero external field, which describes the long-range pro
erties of the Ising model in the critical region@32#. This
result implies that the DPT belongs to the same universa
class as the equilibrium Ising model in zero external field,
agreement with recent high-precision numerical results fr
Monte Carlo simulations@13–16#, as well as with a symme
try argument which states that the equilibrium Ising univ
sality class should encompass all stochastic cellular autom
with Ising ‘‘up-down’’ symmetry@30#.

To the best of our knowledge, the work presented her
the first in which an effective Hamiltonian has been expl
itly derived for a far-from-equilibrium phase transition, co
firming that the transition belongs to the same universa
class as the equilibrium Ising model in zero field. The res
represents a significant expansion of the realm of validity
symmetry arguments from equilibrium to nonequilibriu
phase transitions.
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